Skip to content

Finite groups

Theorem

有限生成的阿贝尔群分类定理\(G\) 是一个有限生成的阿贝尔群,则 \(G \cong \mathbb{Z}^r \times \mathbb{Z}_{n_1}\times\cdots\times\mathbb{Z}_{n_k},k \ge 0,2 \le n_1 \mid n_2 \mid \cdots \mid n_k\).进一步地,这样的 \(r,n_1,\ldots,n_k\) 是唯一的.\(r\) 称为 \(G\) 的秩(rank),\(n_1,\ldots,n_k\) 称为不变因子(invariant factors).

Proof

Definition

\(G \cong \mathbb{Z}^r\),则 \(G\) 是一个有限生成的自由阿贝尔群.

Proposition

\(\mid G \mid <\infty \iff r=0\).

Theorem

中国剩余定理\((m,n)=1\),则 \(\mathbb{Z}_{mn}\cong \mathbb{Z}_m \times \mathbb{Z}_n\).特别地,\(\mathbb{Z}_{{p_1}^{r_1}\times\cdots\times{p_k}^{r_k}}\cong \mathbb{Z}_{{p_1}^{r_1}}\times\cdots\times\mathbb{Z}_{{p_k}^{r_k}}\)

Proof

考虑映射\(\varphi\): \(\(\mathbb{Z}/mn\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}\)\) \(\(a \space mod\space(mn) \mapsto (a\space mod\space m,a\space mod\space n)\)\)\(\varphi\) 是一个群同态. \(a\space mod \space mn \in \ker \varphi \iff m \mid a,n \mid a \iff mn \mid a\),从而知 \(\ker \varphi=\{0 \space mod\space mn\}\)\(\varphi\) 为单射.进而知 \(\varphi\) 是同构.

Deduction

每个有限生成的阿贝尔群同构于形如 \(\mathbb{Z}^r \times \mathbb{Z}_{{p_1}^{r_{11}}}\times \cdots \times \mathbb{Z}_{{p_1}^{r_{1s_1}}}\times\cdots \times \mathbb{Z}_{{p_k}^{r_{k1}}}\times \cdots \times \mathbb{Z}_{{p_k}^{r_{ks_k}}}\),其中 \(r,k \ge 0,r_{ij}>0\)\({p_1}^{r_11},\ldots,{p_k^{r_ks_k}}\) 在排列的意义下是唯一的,称为初等因子(elementary divisors).