Skip to content

Isomorphism Theorems

Definition

如果群\(G\)的子群\(H\)满足:\(\forall a\in G\),有\(aH=Ha\),则称\(H\)\(G\)的正规子群,记作\(H \triangleleft G\).

Proposition

\(G\)的子群\(H\)是正规子群当且仅当\(aHa^{-1}=H,\forall a\in G\).

\(G\)的子群\(H\)是正规子群当且仅当\(aHa^{-1}\subseteq H,\forall a\in G\).

受上述命题的启发,我们考虑以下命题:

Proposition

\(H\)为群\(G\)的一个子群,任取\(a\in G\),则\(aHa^{-1}\)也是\(G\)的一个子群,称它为\(H\)的一个共轭子群.

Proof

对于 \(\forall ah_1a^{-1},ah_2a^{-1} \in aHa^{-1}\)\((ah_1a^{-1})(ah_2a^{-1})^{-1}=a(h_1h_2)a^{-1} \in aHa^{-1}.\)

Proposition

\(H\)是群\(G\)的子群,若\([G:H]=2\),则\(H \triangleleft G\).

Proof

任取\(a\in G\)

\(a \notin H\),则\(G=H \bigcup aH=H \bigcup Ha\),从而\(aH=Ha\).

\(a \in H\),则\(aH=H=Ha\).

\(N \triangleleft G\),则\((G/N)_l=(G/N)_r\),记作\(G/N\),在\(G/N\)中规定\((aN)(bN):=abN\),对于\(aN=cN,bN=dN\),有\(c^{-1}a\in N,d^{-1}b \in N\),从而

\[(cd)^{-1}(ab)=d^{-1}c^{-1}ab\in d^{-1}Nb=d^{-1}bN=N.\]

这表明我们规定的运算是合理的.不难验证商集\(G/N\)对于这种运算构成一个群,称为\(G\)对于它正规子群\(N\)的商群.

Proposition

\(G\)为有限群,\(N \triangleleft G\),则 \(|G/N|=[G:N]=\dfrac{|G|}{|N|}.\)

Proposition

\(N\)是群\(G\)的一个正规子群,令

\[\pi:G \rightarrow G/N\]
\[a \mapsto aN\]

\(\pi\)是群\(G\)\(G/N\)的一个满同态,\(\operatorname{Ker} \pi=N\)\(\pi\)称为自然同态或标准同态.

Theorem

群同构第一定理\(\sigma\)是群\(G\)到群\(\tilde G\)的一个同态,则\(\operatorname{Ker} \sigma\)\(G\)的一个正规子群,且\(G/\operatorname{Ker}\sigma \cong \operatorname{Im} \sigma\).

Proof

先证明\(\operatorname{Ker} \sigma \triangleleft G\).

事实上,对 \(\forall a \in G,x\in \operatorname{Ker}\sigma\)\(\sigma(axa^{-1})=\sigma(a)\cdot\sigma(x)\cdot\sigma(a^{-1})=\sigma(a)\cdot\sigma(a^{-1})=\sigma(a \cdot a^{-1})=e\)

\(axa^{-1}\in \operatorname{Ker}\sigma\),从而\(a(\operatorname{Ker}\sigma) a^{-1}\subseteq \operatorname{Ker}\sigma,\operatorname{Ker} \sigma \triangleleft G\).

考虑映射

\[f:G/\operatorname{Ker}\sigma \rightarrow \operatorname{Im}\sigma\]
\[a\operatorname{Ker}\sigma \mapsto \sigma(a).\]

由于\(\operatorname{Ker}f=\set{a\operatorname{Ker}\sigma \mid \sigma(a)=e}=\set{a\operatorname{Ker}\sigma \mid a\in \operatorname{Ker}\sigma}=\operatorname{Ker}\sigma\),故\(f\)是单的,\(f\)显然也是满的,故\(f\)是双射,从而\(G/\operatorname{Ker}\sigma \cong \operatorname{Im} \sigma\).

Theorem

群同构第二定理\(G\)是一个群,\(H<G,N\triangleleft G\),则

(1) \(HN<G\);

(2) \(H \cap N \triangleleft H\) ,且\(H/H \cap N \cong HN/N\).

Proof

对于 \(\forall h_1n_1,h_2n_2\in HN\)\((h_1n_1)(h_2n_2)^{-1}=h_1n_1n_2^{-1}h2^{-1}=h_1n_1h_2^{-1}n_3=h_1h_2^{-1}n_4n_3\in HN\),从而\(HN<G\).

对于\(\forall a\in H,aha^{-1} \in a(H\cap N)a^{-1}\),有\(aha^{-1} \in H,aha^{-1}\in N\) since \(N \triangleleft G\)

从而 \(aha^{-1} \in H\cap N\),故\(H \cap N \triangleleft H\).

考虑映射

\[f:H\rightarrow HN/N\]
\[a \mapsto aN,\]

显然\(f\)是满的,\(\operatorname{Im}f=HN/N\)\(\operatorname{Ker}f=\set{a \in H\mid aN=N}=H \cap N\),从而由群同构第一定理知:\(H/H \cap N \cong HN/N\).

Theorem

群同构第三定理\(G\)是一个群,\(N\triangleleft G\)\(H\)\(G\)的包含\(N\)的正规子群,则\(H/N \triangleleft G/N\),且\((G/N)/(H/N)\cong G/H\).

Proof

对于 \(\forall gN \in G/N\)

\[\begin{aligned} (gN)(hN)(gN)^{-1}=(gN)(hN)(g^{-1}N)=(Ng)(hg^{-1})N \\ =Nh'N=h'N\in H/N, \end{aligned}\]

从而\(H/N \triangleleft G/N\).

考虑映射

\[f:G/N \rightarrow G/H\]
\[aN \mapsto aH,\]

\(\operatorname{Im}f=aH,\operatorname{Ker}f=\set{aN\mid aH=H}=\set{aN|a\in H}=H/N\).

从而由群同构第一定理,有\((G/N)/(H/N)\cong G/H\).